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ABSTRACT

The analytical treatment of the problem of solidification in a slab
of thickness 2a is based on Lightfoot's solution for the case of a semi-
infinite mass, initially at constant temperature »nd bounded by the plane
surface X = O kept at constant temperature. The rate of advance of the
solid walls moving from the two boundary planes x = O and x = 2a, kept
at constant temperature, is given in closed formm, Solidification in a
sphere, in an infinite or finite cylinder, or in a parallelepiped, is
obtained from the solution for the slab by correlation of temperatures due
to the initial supply of heat., Numerical solutions can be calculated
rapidly.
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INTRODUCTION :

An an=lytical solution of the problem of freezin~ in a finite region
has been attempted by Lightfoot# who studied the rate of solidification of
a medium, originall; at constant temperature, and bounded by the plane
surfaces X = O and x = 2a kept at constant terperature. The problem
was treated by the method of images but essuntial factors were neglected
and the solution obtained by Lishtfoot is neither complete nor exact.

An exact solution has been obtained by the same author for th= case
of a semi-infinite mass of molten material, originallr at constant tempera-
ture, and with its bounding plane surface x = O maintained at constant
(zero) temperature, In the given solution, the diffusivity k, the specific
heat ¢, nd the density @of the medium, are assumed constant for all tempera-
tures, and the same for the liquid as for the solid medium,

The so'ution of the problem of solidification in finite regions,
~iven below, has neen derived from Lightfoot's solution for a semi-infinite
medium. The following method will give the rosition of the surface of
separation of solid and liquid phases as a function of time. Results of
this study mayr de of help in the investigation of a complete so'ution of the
problem of solidification,

Solidification in a Semi~-infinite Medium®*

The solution of the problem of solidification of a mass of molten
riterial requires, in addition to known solutions, consideration of the effect
on the temperature caused by the evolution of latent heat of fusion. In’
Lightfoot's analysis of the problem, the surface of separation of solid and
liquid phases has been regarded as a movinz source of heat, The spead of
of the plane source was determined from the condition that the temperature
at the moving plane surface, at any position, is equal to the meltins point
of the material,

The position x of the moving plane, at time t, in a medium initially
at temperature ¢ , and with its bound:mr rlane X = O kept at zero
temperature, is given by

X

24 YKkt (1)

where k is the thermal diffusivity of the medium, and the constant # is
obtained from

vego )+ L geto(n)(i-0(2) (2)

# Proc. London Math., Soc. (2), 31, (1939), 97
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terms used in (2) are as follows:
the melting point of the medium
the initial temperature

the latent heat of fusion

the specific heat

ot)= & [CH

With this solution, the temperature W, at a point x,, at time t,

for x,<2£-/£-f will be:

and

et () + S 1o (B

for %5> 24 /KT

v #0 (—z-%g)-r%ﬁ 20 (p) {I- e(a"m)}

According to (4) ard (5), we notice that, while solidification

) {1- o (4))

(3)

(&)

(5)

oroceeds from the plane x = O, the tenperatures due to the original

sunply of heat, and to the latent 12at of fusion, can be \,v;ltated separately.

For x= ZQ\RT at the surface of separation of solid and liquid

vhases, (4) and (5) coincide with (2).

The terms in (2) are constant for any position of the moving plane
surface source, and can be written as:

V4 = g0 (%)
v, - EE 4o 1) (-0 (n)

(6)

(7)

(8)

—
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Solidification in a Slab of Thiclness 2a

An exact solution of the problem of soliditic~ .-~ ~ ' v 33 of molten
material, initially at constant temrerature, can :»: derived from the results
ziven in the preceding section.

For a freezing medium in the resion 2a, initially at temperature ¢ ,
with the bounding plane surfaces x = O ) and X = 2a kept at zero,
we evaluate the sum of the temperatures due to the om.vmal supply of heat
and to latent heat of fusion released on solidification by the two solid
sections of the mediun: (0, x) and (22, 2a = x) as in Fig, 1.

a 2a-xtA2a

\
\

Figz. 1

The surfaces of sevaration of solid and liquid phases are taken as
two moving »lane sources of heat, and the speed of these two sources is
determined from the condition t"nt the temreriture at the movinsg plane
sources is equal to the meltine point of the medium,

Yor tre terneraltre 2t the moving sources we write the condition

V=V¢+(V)1+(V)2 (9)

wiere V, refers to the orieinal supply of heat, and (Vi ) R (VL )Py
are temperatures due to hest of fusion frot solid section (¢ ;\) and
(2a, 22 = x) respectiv:ly,

-



It is evident Lhat golidification will proceec from both x = 0 and
X = 2a, and for t small, the positions of the moving planes will be

z=2£.ﬁ§, 2a-x = 2a - 24 vkt

(10)
The constant #, of (10) is the same as for a semi-infinite medium and
is ziven br (2). In terms of the dimensionless variable
K
T gEt (21)

forms (10) will become

f‘:Z’t.ﬁ h;-%-: k- Z‘Qoﬁ (12)

In the region 23, the temperature V¢ , at any point x , at a
viven T , is the mncwn solution

_ P 5
%‘%?‘o N {Zn-ﬂ')'nxc En+)m® 4 (13)

During an initial period of time, (V, ) , and (Vi_), will be obtained
from (4) and (5) as follows: 2

L-:E t.e*f o (?5%) {,- e(t.\} (14)

and (V[ ),= L‘c@'*.ei.zg(‘;‘) {!"9 (‘ZE?%)} (15)

ror $2AME (1 )= LY 4, % (1) (1- 0 (ZEaw)) )

For S1<2A(V, ) =

e )zs same as (15)

For the moving nlane source X = 2(.-/‘[' the terms in (9) will
be svaluated from: q

T



i e e

g X
oo  =(2n+)°TTTT,
ﬂ : ! sIn @_’i'.).!‘_i‘_ e (ZH"') A (17)

reo &n+l 24
(VL)I = -L—CE i,e“g e (4,) {l— 8(%.)} (18)

(0, S5 4ot 10 (2252

Temperat.ure v (Vg ), , and (V| ), at the moving plane source

= 24,vT \Vlﬁ be obtained with C‘.L?) (19), and (18), respectively.
The sum of (17), (18), and (19), is equal to the melting point of the
medium for a range of values 0L T & T, . The upper limit T, varies
for each numerical case and depends upon t.he initial temperature # and
the ratio -&- . For T small , the temperature at the center of
the slab is ziven by

n, s (2ntN)7r | ~(2n+1)* Tt Ty
2

2
2 WiE 4 o e(é){t-o(zﬁ,)} (20)

and we can verify that, when
T _<_ 't; v(x - a) = ¢
T > 1-, V(X - a) < ¢

In each numerical cas:, tierefore, the upper limit Tp can be obtained
with (20), We see also that, during the entire period of time T, |,
the boundar: conditions of the problem will be satisfied.

* In the case of a semi~-infinite medium and x > 2 # <] , Or

>24,Y/T , the temperature given by (5) is the sum of the
two terms

Vg= ¢80 (aqﬁL') (21)

2 (22)
V,_:-.gcﬁ{,e‘o 9({.){ 9(2 '/f)} 22



Solution (21) is correct for large values of T but, for small values,
Vg must be equal to ¢ at a finite distace fram the boundary

X = 0, Where Vg = # , we will obtain (V )- 0. In general, the

boundary condition is satisfied when the temperature at the center of a

slab of thickness La , initielly at @ and with bounding surfaces kept

at zero is )l.n
oo -(Zn+l X7/
=448 1 2n+l)Te 16
(VO),{_.%“"'R Z Zntl SN2 (23)
2 ¢
This conditi‘oon can be verified for any 'Z; s including the limiting case
where
X, 32%, -./"'"z; =|
k-]
and we can write
(VL)X =la =0

a

During therperiozl of time To , the two plane sources move from the
boundaries toward the center of the slab as in semi-infinite medium,
The temperature distributions Vg s (Vo ), and (V. k:m and their sum,
computed for a numerical example, vuth Ta ‘t‘., are shown on Fig, 2.

In the region 2a, initially and till solidification is complete,
the correct mathematical forms of (V,_) and (Vp ), , at the plane
source moving from x = 0 tox = a are:

-n rz“(

)3_ x' gt (2)

L = nmx T nmx’
(VL)'='_‘:-nZ-| sin Za/ sihn>2= e

T
o n‘Tt (%—) } '
(VL)g";L'z:' sin n;:’x sm n-rt(Za x) %dT (25)
ne o ‘

During the interval 0T« T, (Vo ), is a constant obtained from (18)
while (V) )y , evaluated from (19) , is initially zero but may

assume increasing values as approaches e . However, during the
entire interval OsTs o

(W), = V-{Vg+ (v))} (26)

N
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The rate of solidification in the range ogxs misht be obtained
directly from (24) and (25) if the seriss of integrals in the above
forms could be evaluated exactly. So far, available zraphical or
numerical techniques are unsatisfactory.,

Light foot shows that a rate of solidification can be obtained by
trial method, and assumes a position of the moving planes given by

T>T
X -2 KVT-T 2 Lo
—‘—tb ZK 2 ¢ .

where b, K, and Tz , are chosen for continuity and satisfy the
conditions

ekt ) T+ )

The constant K remains undetermined and its value must be adjusted for
correct temperature at prescribed time, According to the author, this
method requires Ygreat labour",

For solidification in the range xﬁ_}_c_s_a; we assume a position
of the moving plane given by

X
§:=—b+.z£‘~/z‘:? x2 X%

t Ty, (27)

where b, s and 7-; , are to be determined from the condition that

the temperature at the moving plane is equal to the meltine point of the

medium. For continuity of the two functions of T , (11) and (27)
and their first derivatives at x = XgyWe make

T, (- 3%)

(28)

et o §
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We determine b and af‘ from the following:

',-:""" -b+2“vﬁ-‘-'z':
(29)
| = b+ 2 £3 /T-T,

The second equation of (2@ refers to complete solidification at
a definite T, , to be obtainéd according to the following considerations.

While the source of heat moves from X = 0 tox = X,
temperature (VL) is obtained from (18), and is a constant at any
point in this ran-e, At the same plane source, (V‘_) will vary from
zero to a known value. Colidification is corplete when the source
rovin~ from X = 0, and the source movins from x = Za y Merge

atx = a . At this position we will obtain ( VL ) (VL )l
regardless of their value at any other point.

As the plane source moves from Xx = Xq to x = a , temperature
(VL)| may be:

(2) continuouslyr increasinz
(b) continuously de reasm

(¢) constant = 4- 9(* ) Q(.‘ )}

The rate of solidification for (c¢) can be easily obtainesd, as the
temperature, due to the original suppl: of heat at x = a and
T = 'Ti will be given by

ey 3
.44 T T ot sp{2ntlm e’(‘a"*') T ap
m oo 2ntl 7 2 (30)
F

V- 2RV 4 g (4,) {:-au.)}

The value 1-‘ of (3C) mar be found sraphically and checked
numerically.

The functions of T , correspondin~ to (a), (b), and (c), will

ba obtained by substitutinz in the second equations of z29) a value T-d

\ e



(a) areater than in (30)
(b) smaller than in (30)
(¢) as in (30)

and may be represented as in Fig, 3. a)

I
l
|
|
|
|

Ko =8

Fig, 3

The speed of the moving planes for (a), (b), and (c), will be
A by gy A X, X< &
4T VT T T.8T<T,
and for each case will depend on .4‘ and T .

Ir any numerical example, the lowest rate of solidification will
be obtained for case (a) and the highest rate for case (b).

(31)

The rate of solidification is given also by the rate of conduction

of heat at the source ¥ , or

K pe {40, .L_Q.L}

dXgolid dXmolten

# Lightfoot, loc. cit,

10

(32)

- b o s
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Graphically, the rate of comuction for case (a) may be represznted as
in Fig L. A larze increase of (V ). implies an increase in the rate
of conduction at the source, or r:ke of solidification, The rate computed
with (31) will follow an opposite trend. The difference between
riphical and computed rates tenc to zero when (v ) 2>0)

‘Rea Inax%,

|
|
I‘
|
|
|

(VL\ \\ \
N\ \

v\

L/

| A
|
I
| s
| 1
X a
Fi -~ 13

Cas: (b), repr: wmted in Fie 5, shows that if¢ (VL) decreases,
the sraphical rate will be lower than the computed rate. Their difference

tends to zero when (VL )'x-r.(v L )"c x
3 - o

#Dotted lines on Fi+ 4, >, and 6 are temperature distributions (VL)

301id lines are drawn tanpgent to distributions a. the sources. {

11
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In cag: (), Firure 6, -rraphical and comrul i rates w311l coincide,
hs Lwe covin vinnes x nd 21 - X amreach X I 3 , the rate of
solidi ficaticn Zecreasegind lends to a consiant., L co
('JL ) ab aar rosition of the nlame souree ~ovin ' from x = 0 (or

’ Lo . . \
\J’L) tiocie alan soure: rmevine from X I 040 i3 the correct

(VL)| | | N\ \Y

Fism 6

I5e

L2



Ve mayv &' ate th~t in a freezing mediun, 'nitially 2= temperature

» and with its Louniing surfaces x = 0, and x = 23 , kept at zero, the

positions of the surfac:s of separation of soria uand liquia pnases are
ziven by the two funciions of

-}?-Z{.r’f 0TS,
Fe-btr2d, ST LTS Y (33)

The constants and the rangss of T of (33) will vary for each
nurericil case and are to be determined from the data of the problem
accordine to the cenditions ~iwven in this saction,

In the fors of (33), thg thermal di ffusivitr k, included in the

dimensionless variable T = T , is nol undetermined, .e assume
k¥ constant ard zquid Lo the averase diffusivity of the medium in the

temrerature rante Vo to ‘ , 1.2, in the molten material. This constunt

is to be de! 'rmi :d 2xrerimentally, and methods o f measurenent may be
ragsed on solutions 7iven in the followin- sections,

The cormlete exact solution of the problem, for the special case
f = V (i.e. initial temperature is at melting point of the medium)
is given by Lishtfoot. In this case solidification proceeds from each
boundary £ = O and X = 23 , inderendently, and the vosition of
the rovinz plane x (or 2a - x), until solidification is complete, is

7i by
given .5.‘2 ‘ '/‘i'-

(34)
‘here 4 is obtained from (2) as for a semi-infinite redium,.
In an; numzrical example ¢'v , We can write
| )&
' A
Ta (2-4,
(35)

and we verify that for T‘ as in (35) we will obtain

13



Ve _I
Vp= £ T gogr sin EflTe

L.

-@n+)int T,

V- 2LYE 470 (4) (1-6(4))

(36)

Some mmarical solutions for media havins the same melting point are
shown in Firure 7. The initial temperatures ¢ and ratios -% are ad-

justed for equal value of constan: o .

The Sphere and the Infinite Cylinder

In the solution of the problem of solidification in the finite region
2a , the plares of separation of solid and liquid phases have been regarded
as moving plane sources of heat. Their speed was obtained from the
condition that the temperature at the sources is equal to the melting point
of the medium. The temperature due to the original supply of heat is
evaluated from a known solution while the temrperature due to latent heat
of fusion is determined from analysis. Solification in a sphere, or in
a cylinder, gives rise to spherical, or cylindrical surface sources of
heat, and the forms of Vi , for these cases, are similar to (24) or (25).
As for moving plane surfaces, correct evaluation of the series of
intezrals can not be obtained by available methods. The temperature
(VL ), at the surfaces of separation of solid and liquid phases will be
determined from analyvsis,

The known solutions V in the slab of thickness 2a, in the infinite
cylinder @ Y P © , and in the sphere &Y Pg@ ©  , Initially at @
and with boundary surfaces k:pt at zero, expressec in terms of the dimension-
less variable T & T , are as follows:

At A Ao o, b0 V2



4 i e i

e e e s ——————— s x w0 0} e s S T a s ama e

o
(37)
(g, = 24 ke iz
=2 e
2 reo 2 ,(acty) 58)
o0 , \P -(n-l-l)"rtz'l'
<V¢)a= 2a ¢ 5 (_‘I’)' smme 3
' Tr n=0 n a
(39)

where the subscriptsl, 2, and 3, refer to the slab, the cylinder and
the sphere, in that order.

The temperature distributions obtained with (37), (38), and;39),
for the same medium, with dimension a and initial temperature s
the same for the three regions, will never result as in Figure 8, regard-
less of T, , Tp_,and & . Identical distributions in any
eiven range X= & =2, A& -X = d’-r- and oK X< & , may be obtained
for particular values of 'l:‘, Tg , and T’ , as in Figure 9.

I
I
A"/} I |
1 |
I [
I I
| .
| |
Xto Xad ::
= Tr=0 =
r=sa Fig,a

15



In the problem of solidification we assume that, in all three
regions, the surfaces of separation of solid and li?}lid phases are at

equal distance from the boundary (we may have T,*
these surfaces we write

W"'VL‘V

gﬁ'l; )anc}for

(10)
At these surfaccs we obtain also
(\,“). =’t‘&i)z,=!(\n‘ls
(VL). = (VL)z s (VL)3
(41)

where ( VL). , in this instance, is the temperature caused by all L.e
neat of fusion flowinz in the slab 2a.

We will prove briefly that (41) is a necessarr condition in the
solution of these problems,

We consider the slab and the infinite crlinder, solil at unit
distance from the boundary, or at

X=a-r=|
(42)
and at the surfaces of separation, we make
(Vg), > (Vg), (43)

The inequality of (43) means that, in the solid part of the slab,
the temperature distribution ( Vg ), would be higher, at all points, than
the temperature distributions ( Vg )pin the solid part of the cylinder,
During solidification of unit volumes of medium adjacent to the external

16




surfaces, the total flow of original heat, per unit area, would be

greater at the cvlindrical surface & > Z & =1 than at the
corresponding plane surface X s & =/ , During solidification, in sany
rezion, origzinal heat and latent heat of fusion flow to the boundary
concurrently and are subject to the same boundary conditions. With a
greater total flow of original heat we would obtain also a greater total
flow of latent heat of fusion; the temperature distritution (Vg ), in the
s0lid part of the slab would be higher, at all points, than the tempsrature
distribution ( Vg Lin the cylinder,

Assumption (43) leads to the conclusion that, either in the slab or
the cyvlinder, the temperature at the surface of separition of solid and
1iquid phases would result

\ﬁ"*\’L "\’
(44)

The same conclusion will »e reached reversing the inequality in (44)
and for subsequent elements of volume, until solldification is complete.
The same result will be reached co.paring soiidification in a slab and in
%= sphere,

This conclusion opens the wav to the so’ution of the problems of
s~lidirieation previously discussed and avpears to have besn overlooked
in nast work on the subject,

3ince tha solution of the problems of solidification for the slab,
the infinite cyvlinder, and the srher:, must satisfy condition (41), the
solutions for the cylinder and the sphere can be derived from the solution
obtained for the slab,

For solidification in the slab, at a siven distance X/& , we
evaluate € from the two foms of (33) and solve (37) for these values of
and ¥4, In (38) and (39) we substitute a“ . and Vg
as obtained from (37). The values Tg and f‘ given by the (38) and (39)
can be nbtained ~raphically and checked numerically.

Firur~10shows thet, initially, the rates of solidification in all
three regions coincide., After initial periods, the rates of solidification
of a cvlinder and a sphere will assume constant valuss; in a sphere more
rapidly than in a cylinder.

17
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5.

The Slab, the Infinite Cylinder, and the Sphere, Initial temperature
constant and radiation at the surface into a medium at cmstant

temperature
As in the previous cases, the solutions of these problems are derived

from the solution obtained for solidification in a slab, with initial
temperature constant and bounding surfaces kept at zero.

In a medium, initially at ¢ and with radiation at x Tea and
= #a into a medium at zero, the temperature distribution V’ is

Bux 2
ZAC-OG 2 ‘/60 T
Ve ':| [6,,+A+A‘]cosﬂ
(h5)%

where A = ah, h being the heat transfer coefficient of the surface,
and A’ /3‘ Xy . the nositive roots of

AtanB=ak (16)

The temperature distribution obtained with (46) for any value of n and
and the temperature distribution obtained from (37) for the slab,
for anv value of T , will never cross each other, as in Firure 8, The
difference between temperature gradients at corresponding points, through
the entire rezion, will always be @& O, or always &0 . We conclude that,
when in the rersion « 2 € x<& 43 , at constant initial temperature and
radiating at xee=a and at xe+a into a medium at constant temperature,
we find the surfaces of separation of solid and liquid phases at the
same distance from the boundary as in the slab of %37), condition (41)
will be satisfied., The solution of the problem for this case is obtained
by the method outlined in sectior 4,

Condition (41) applies also to an infinite cylinder and to a sphere,
initially at constant temperature and cooled by radiation into a medium
at constant temperature, The two problems can be solved by the same
method and forms of V* for these cases can be found in textbooks.

* Carslaw and Jaeger, Conduction of Heat In Solids, p. 100

18
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The Finite Cylinder and the Parallelepiped

In the cvlinder of Figure 11 initia.ly at constant temperature ﬁ and
with boundary surfaces kept at ero, the surface of semaration of solid
and liquid rhases will be at a point

when (V’ )Pis equal to the temperajure V’ obtained in the slab of

B!
_—i P:

)
1
1

»“;
win P

!

Fig 11

(37) at the surface of separation L « In zeneral,
solidification in a finite cylinder occurs with the hi <her of the two

temperatures Vg obtained for the slab at the two positions ziven by the

coordinates of the point as in (47).

The known solution Vg in a finite cylinder, initially at ’

'nd with boundary surfaces’ kgpt at zero, expressed in terms of the

Jdmensionless variable T

, is as follows:

19
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e -d.,,‘T o m -(Zm'ﬂ)" )&'
: = 2 (=) &
VP% :mJ.«He . T#T“sl%m‘e

nel n ms0

(48)

Solution Vg for 3 finite cilinder, initially at @ and cooled by
radiation into a'medium at constant tenperature is given In textbooks.

30lidification in parallelepiped is solved by the same method.

Firure Bsiows surfaces of separation in a finite cylinder. The
nwa:ric:l data are the same as for (b) o1 Figure 7.

Inclosures:

- Filrure 2
Pizure 7
Pizure 10
Finure 12

-

i
. @
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